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Dynamic phase transitions in the anisotropicXY spin system in an oscillating magnetic field

Tomoaki Yasui,* Hiroki Tutu,† Mariko Yamamoto,‡ and Hirokazu Fujisaka§
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Kyoto University, Kyoto 606-8501, Japan
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The Ginzburg-Landau model for the anisotropicXY spin system in an oscillating magnetic field below the

critical temperatureTc , ċ(r,t)5(Tc2T)c2ucu2c1gc* 1¹2c1h cos(Vt) is both theoretically and numeri-
cally studied. Herec is the complex order parameter andg stands for the real anisotropy parameter. It is
numerically shown that the spatially uniform system shows various characteristic oscillations~dynamical
phases!, depending on the amplitudeh and the frequencyV of the external field. As the control parameter,
eitherh or V, is changed, there existdynamical phase transitions~DPT!, separating them. By making use of
the mode expansion analysis, we obtain the phase diagrams, which turn out to be in a qualitative agreement
with the numerically obtained ones. By carrying out the Landau expansion, the reduced equations of motion
near the DPT are derived. Furthermore, taking into account the spatial variation of order parameters, we will
derive the analytic expressions for domain walls, which are represented by the Ne´el and Bloch type walls,
depending on the difference of the coexistence of phases.
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I. INTRODUCTION

After the first study of phase transition, such as dynam
behavior of a deterministic mean field equation of motion
a ferromagnet in an oscillating field@1,2#, Monte Carlo stud-
ies of a kinetic Ising spin system under its critical tempe
ture in a strong oscillating magnetic field have been carr
out @3–7#. It was found that the system exhibits asymmetry-
restoring oscillation~SRO! when the frequencyV of the
periodic external magnetic field is smaller than its critic
value Vc determined by the temperature. This is beca
local spins can follow the slow variation of the external fie
On the other hand, for a sufficiently high frequency field t
spins cannot follow rapid change of the applied field, a
ultimately the spins exhibit asymmetry-breaking oscillation
~SBO!.

In this connection the transition that is observed as
frequency is increased was called thedynamic phase transi
tion ~DPT!. In particular, the analysis of the Monte Car
simulation carried out for a two-dimensional kinetic Isin
spin system below the critical temperature@4–7# suggests
that the DPT belongs to the same universality class as th
the critical Ising spin system in thermal equilibrium. In fac
it was reported that in the SBO region the intensity of t
deviation from the SRO increases in the power law form@3#,
and the probability density for the total magnetization av
aged over one period of the oscillating field has a single p
structure in the SRO region and the two peak structure in
SBO region, as reported in Refs.@4–7#. It was also shown
that various probabilistic cellullar automata with the symm
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try the same as the Ising spin system belong to the s
universality class as that of the equilibrium Ising spin syst
@8#.

Recently, Fujisaka, Tutu, and Rikvold analyzed t
Ginzburg-Landau equation in an oscillating external ma
netic field,

Ṡ~r,t !5~Tc2T!S2S31¹2S1hcos~Vt ! ~T,Tc!,
~1.1!

to study the DPT from both the dynamical-theoretical a
statistical-mechanical points of view@9#, whereT is the tem-
perature of the system andTc is its critical value. They found
that the DPT is nothing but the bifurcation of the SRO whi
appears as eitherV is increased orh is decreased. Further
more, they carried out the Landau expansion around the
stable SRO including the thermal noise, and obtained
effective Hamiltonian the same as the Ginzburg-Landau f
energy in the thermodynamic phase transition. This fact c
firms that the DPT belongs to the same universality class
that of the Ising system in thermodynamic phase transitio

It is quite natural to ask whether or not such a pha
transition is observed in other spin systems in an oscillat
field. In Ref.@10#, in fact, another type of DPT was reporte
in the Ginzburg-Landau equation with an oscillating exter
field corresponding to theXY spin system below its critica
temperature. This fact suggests that there may exist rich
rieties of DPT in other spin systems in an oscillating ma
netic field. The aim of the present paper is to report on
analysis of the anisotropic spin system in an oscillating
ternal magnetic field below the critical point. The mod
equation is the following Ginzburg-Landau type equation

ċ~r,t !5~Tc2T!c2ucu2c1gc* 1¹2c1h cos~Vt !

~T,Tc!, ~1.2!

1-
;
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where c is the complex order parameter, andg is a real
anisotropy parameter. In the present model, the oscilla
field is applied in the direction of the real component ofc.

The present paper is organized as follows. In Sec. II,
will discuss the fundamental characteristics of the local
namics of Eq.~1.2!. It will be shown that the symmetry
argument leads to the possibility of four types of oscillatio
which suggests that there exist several DPTs separa
them. In Sec. III, numerically integrating the local dynamic
we obtain the phase diagram for four dynamical phases
different values of the anisotropy parameterg with the Flo-
quet analysis. In Sec. IV, we will carry out the analysis of t
mode expansion to determine the DPT points and comp
the results with those obtained in Sec. III. In Sec. V,
clarify the universality class of DPTs, we will derive th
reduced dynamics, making use of the Landau expansion
DPTs, and its results are compared with exact results
numerical integration. In Sec. VI, considering the spatial
homogeneity of spin variables, we will derive the analy
forms of domain walls connecting two stable oscillati
states, and find that they are fundamentally the same as e
the Néel or the Bloch walls. Concluding remarks are given
Sec. VII.

II. GINZBURG-LANDAU MODEL AND SYMMETRY
ARGUMENT

After the rescaling

c→~Tc2T!1/2c, t→~Tc2T!21t, ¹→~Tc2T!1/2¹,

g→~Tc2T!g, h→~Tc2T!3/2h, V→~Tc2T!V,

so that the dimension of temperature is unity, the anisotro
XY spin system Eq.~1.2! in a spatially uniform oscillating
magnetic field with the amplitudeh and the frequencyV is
written as

ċ~r,t !5c2ucu2c1gc* 1¹2c1h cos~Vt !52
dH
dc*

.

~2.1!

Here the Ginzburg-Landau HamiltonianH is defined by

H5E F2ucu21
1

2
~ ucu2!22

g

2
~c21c* 2!

1u¹cu22h cos~Vt !~c1c* !Gdr. ~2.2!

In the present paper, the thermal noise which is often ad
in the equation of motion is neglected. This is because
will mainly discuss the dynamics in a strong external ma
netic field, where the deterministic nature of motion is n
much affected by thermal noise. This model reduces to
Ising model@9# for g→` and to theXY model @10# for g
50. The equations of motion for the componentsX and Y
(c5X1 iY) are rewritten as
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Ẋ~r,t !5@11g2~X21Y2!#X1¹2X1h cos~Vt !52
1

2

dH
dX

,

~2.3!

Ẏ~r,t !5@12g2~X21Y2!#Y1¹2Y52
1

2

dH
dY

. ~2.4!

We first discuss the characteristics of the local spin
namics without a spatial coupling term. The local dynam
is given by

ċ~ t !5c2ucu2c1gc* 1h cos~Vt !. ~2.5!

Namely, by using the components, this is written as

Ẋ~ t !5@11g2~X21Y2!#X1h cos~Vt !, ~2.6!

Ẏ~ t !5@12g2~X21Y2!#Y. ~2.7!

For h50 this set of equations of motion has the followin
linearly stable fixed pointsXss5(Xss,Yss):

Xss5~6A11g,0! ~g.0!, ~2.8!

Xss5~cosu0 ,sinu0!,~u0 :arbitrary! ~g50!, ~2.9!

Xss5~0,6A12g! ~g,0!. ~2.10!

Without an external field, for the replacementg→2g, the
dynamics are equivalent since it only alters the role of
real and imaginary components. However, whenhÞ0, since
the specific direction of the external field breaks the equi
lence for the replacementg→2g followed by the exchange
of the components, the dynamics forg.0 and g,0 are
different.

The set of the equations of motion~2.6! and~2.7! involves
two invariant properties for corresponding symmetry ope
tions. The symmetry argument allows us to classify the
namical behaviors of the system. Let us discuss the basic
of the symmetry in dynamics. First, ifc(t)5X(t)1 iY(t) is
a solution of Eq.~2.5!, then

c̃~ t !5c* ~ t !5X~ t !2 iY~ t ! ~2.11!

also satisfies Eq.~2.5!. This reflects the property that Eq
~2.5! is invariant under the change of sign,Y→2Y. One
should note that these oscillations withY.0 or Y,0 belong
to separate regions in the phase space, because the sign
Y-component cannot be changed in the dynamics. Furt
more, with the periodT(52p/V) of the applied field, if
c(t)5X(t)1 iY(t) is a solution of Eq.~2.5!, then

ĉ~ t !52c* S t1
T

2D52XS t1
T

2D1 iYS t1
T

2D
~2.12!

is also the solution of Eq.~2.5!. This reflects the property tha
Eq. ~2.5! is invariant for the operationst→t1T/2 andX→
2X.

The motion with the symmetry
3-2
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FIG. 1. Limit cycles in theX-Ẋ space denoted by solid lines respectively indicate typical trajectories of the Ising-SRO~a! and the
Ising-SBO~b! phases. Solid and broken lines in~b! correspond to stable and unstable limit cycles, respectively. The broken line in~b! is the
Ising-SRO. There are degenerate stable limit cycles in~b!. Arrows show the movement of the phase points in the course of time.
parameters areg50.55 andh51.0 are for~a! and ~b!, and,V50.520 for~a! andV50.530 for~b!.
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c~ t !5c* ~ t !, i.e., Y~ t !50 ~2.13!

is called theIsing-type motion. An oscillation without this
symmetry is called theXY-type motion. One can expect tha
the dynamics tends to exhibit the Ising-type motion for
large value ofugu. On the other hand, if the motion has th
symmetry

c~ t !52c* S t1
T

2D , ~2.14!

its real part satisfies the condition

E
0

T

X~ t !eil Vtdt50 ~ l 50,62,64, . . . !. ~2.15!

Because of this particular symmetry, the motion with t
symmetry Eq.~2.14! is called the SRO, and the motion with
out this symmetry is called the SBO.

As is expected, for a sufficiently large value of the anis
ropy parameterg, only the SBO is stable for a vanishin
external field. As the magnitude of the external field is
creased, the spin variable tends to synchronize the varia
of the external field. Furthermore, as is explicitly shown
Appendix A, the local spin apparently shows the SBO fo
weak external field. Therefore, one expects that if the S
stably exists, it should be observed for sufficiently large v
ues of the field amplitude. Furthermore, as the frequenc
the external field is increased, it is expected that the s
cannot follow the variation of the external field.

The above simple argument suggests that depending
the amplitude and the frequency of the external field,
local dynamics~2.5! may exhibit four types of motions
Ising-SRO, Ising-SBO,XY-SRO, andXY-SBO. Therefore,
we expect the existence of dynamic phase transitions am
these characteristic oscillations.
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III. DYNAMIC PHASE TRANSITION AND PHASE
DIAGRAM

A. Four dynamical phases

In this section, carrying out numerical integration of E
~2.5!, we show the existence of dynamic phase transitions
expected from the symmetry argument in the preceding s
tion, and present phase diagrams in the space spanned b
frequency and the amplitude of the external field. The typ
of limit cycles are crucially affected by the magnitude of t
anisotropyg, and are thus classified with the value ofg.
When g takes sufficiently a large positive value, it is e
pected that Eq.~2.5! is similar to the Ising model. Figure 1
shows the trajectories of limit cycles for a couple of para
eter sets,g50.55, h51.0, V50.520 @Fig. 1~a!#, and V
50.530@Fig. 1~b!#. These figures represent a couple of d
ferent Ising-type oscillations. Since they have a vanishinY
component, the trajectories in theX-Ẋ space are shown. Fo
V50.520, the Ising-SRO trajectory, which has the symm
tries ~2.13! and~2.14!, is stable, which is shown in Fig. 1~a!.
On the other hand, forV50.530 the Ising-SBO trajectorie
with the symmetry~2.13! but without the symmetry~2.14! is
stable, and the Ising-SRO trajectory is unstable. The Isi
SBO trajectories are degenerate twofold. These two sta
and one unstable trajectories are, respectively, represente
solid and broken curves in Fig. 1~b!. As expected, the emer
gence of a couple of trajectories presented above confi
the existence of the DPT. Namely, there exists the transi
point V1 (V1'0.525), and the Ising-SRO and the Isin
SBO phases are stable, respectively, forV,V1, and forV
.V1.

There is also an oscillation with a nonvanishing imagina
component of the order parameter forg,0, which is re-
ferred to as theXY-type oscillation. In the same way as th
above, we compare the limit cycles for parameter valueg
520.05, h51.0, V50.317, andV50.337. ForV50.317
the Ising-SRO is stable, while forV50.337 theXY-SRO is
3-3
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stable. Therefore, there exists the dynamic phase transitio
V5V2. Namely, forV.V2'0.327 a couple of degenera
XY-SRO trajectories are stable, while the Ising-SRO traj
tory is unstable. Figure 2 shows the trajectories forV
50.337 in theXY-SRO phase.

For the case whereg is between values previously argue
we observe an oscillation without both types of the symm
tries which is a proper motion in the original anisotropicXY
model. Characteristic behaviors for the four different para
eter valuesV50.646,V50.833,V50.851, andV50.869,
whereg50.30 andh51.0 are kept common, are as follow
For V50.646 (V50.833), the Ising-SRO~the XY-SRO! is
stable. ForV50.851, theXY-SBO is stable, and forV
50.869, the Ising-SBO is stable. Thus, there are three
namic phase transition pointsV2 , V3, and V4 as V is
changed, which separate the four dynamical phases. Figu
shows the limit cycles in theXY-SBO phase correspondin

FIG. 2. Typical limit cycles in theXY-SRO phase, where pa
rameter values areg520.05,h51.0, andV50.337. The unstable
degenerate stable trajectories are indicated by the broken line
solid lines, respectively. Arrows show the movement of the ph
points in the course of time.
t
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to the third parameter set. ForV3('0.843),V,V4, a
couple of the XY-SRO trajectories are unstable~broken
lines! and fourXY-SBO trajectories are stable~solid curves!.

B. Floquet analysis and phase diagrams

Numerical values of the phase transition points can
obtained by utilizing the Floquet analysis. Let us denote
period-T solution ofc(t) by cp(t) and the deviation ofc(t)
from cp(t) by dc(t), i.e.,

c~ t !5S X~ t !

Y~ t !
D , cp~ t !5S Xp~ t !

Yp~ t !
D , dc~ t !5c~ t !2cp~ t !,

~3.1!

The linearized equation fordc(t) is written as

dc
•

~ t !5Ĝ~ t !dc~ t !, ~3.2!

nd
e

FIG. 3. Typical limit cycles in theXY-SBO phase, where the
parameter values areg50.30, h51.0, andV50.851. The unstable
and stable trajectories are indicated by the broken and solid line
the X-Y space, respectively. Arrows show the movement of
phase points in the course of time.
Ĝ~ t !5S 11g23Xp~ t !22Yp~ t !2 22Xp~ t !Yp~ t !

22Xp~ t !Yp~ t ! 12g2Xp~ t !223Yp~ t !2D , ~3.3!
he

y
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where the matrixĜ is the period-T function, i.e.,Ĝ(t1T)

5Ĝ(t).

Using the matrixÛ(t) defined byU̇̂(t)5Ĝ(t)Û(t) with

the initial conditionÛ(0)51̂ (1̂: the unit matrix!, Eq. ~3.2!
is solved asdc(t)5Û(t)dc(0). From the Floquet theory i
can be shown that the solutionÛ(t) can be written in the
form @11#

Û~ t !5Q̂~ t !etL̂, ~3.4!
where Q̂(t) is a period-T function, andL̂ is the Floquet
matrix defined byÛ(T)5eTL̂. The stability of the periodic
trajectorycp(t) is thus measured by the eigenvalues of t
matrix L̂. Namely, denoting the eigenvalues ofL̂ as l j ( j
51,2), if Rel j,0 ( j 51,2), then the periodic trajector
cp(t) is stable for any small perturbation. Therefore, tran
tion points, i.e., phase boundaries among different dynam
phases, are given by the vanishing points of the largest
part of the eigenvalues ofL̂. Figure 4 shows three typica
behaviors of the Floquet exponentsl for stable limit cycles
asV is changed for three typical values ofg. By changingV
3-4
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DYNAMIC PHASE TRANSITIONS IN THE . . . PHYSICAL REVIEW E 66, 036123 ~2002!
continuously, each of the Floquet exponents is measured
a stable limit cycle reached after the transient time is over
the present systeml ’s are always real. Figure 4~a! represents
the existence of the transition between the Ising-SRO and
Ising-SBO phases. The Ising-SRO phase exists forV,V1
('0.525), and the Ising-SBO phase exists forV.V1. Fig-
ure 4~b! shows the existence of the transition between

FIG. 4. Floquet exponentsl for three typical values ofg: ~a!
g50.55, h51.0; ~b! g520.05, h51.5; and~c! g50.30, h51.0.
Solid and broken lines correspond to the first and second Flo
exponents, respectively. The transition points separating diffe
phases are indicated by dotted broken vertical lines, at which
largest Floquet exponent vanishes.
03612
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Ising-SRO and theXY-SRO. The Ising-SRO andXY-SRO
phases are present forV, respectively, below and above th
transition pointV2 ('0.709). Figure 4~c! shows the case in
which the successive transitions among the Ising-SR
XY-SRO,XY-SBO, and Ising-SBO are present. The tran
tion points are located atV2'0.656, V3'0.843, andV4

'0.859.
As described above, using the Floquet exponents, we

determine the transition points among different dynami
phases, which enables us to make phase diagrams. In
remaining part of this section we show typical phase d
grams for three values ofg. For eachg, the transition curves
in the (V,h) parameter space are surveyed by searching
vanishing points of the largest Floquet exponent. Figure
the phase diagram forg50.55, where there are two phase
the Ising-SRO and the Ising-SBO phases. The transi
curve is indicated by the symbols and the solid line, resp
tively, obtained by numerical calculation and the mode e
pansion analysis shown in the following section. As will b
shown in the following section, in the regiong> 1

2 there are
only two phases, the Ising-SRO and Ising-SBO phases. T
situation can be regarded as a strong anisotropic case,
the same with the model studied in Ref.@9#. Figure 6 is the
phase diagram forg520.05. There are again two phase
However, in contrast to Fig. 5, they are Ising-SRO a
XY-SRO phases. As will be shown in the following sectio
in the regiong<0 only the Ising-SRO andXY-SRO phases
exist, namely, all the region withg<0 is essentially the
same phase behavior as that for the isotropicXY model stud-
ied in Ref.@10#. Figure 7 is the phase diagram forg50.30.
There exist four phases: the Ising-SRO,XY-SRO,XY-SBO,
and Ising-SBO. This situation is observed in the region
,g, 1

2 , ~see Sec. IV!.
The Floquet analysis shows that depending ong the phase

diagram spanned byh and V is different. In the following
section, using the mode expansion analysis, we will der
approximate phase diagrams for typicalg regions giving
three typical phase diagrams.

et
nt
e

FIG. 5. Phase diagram forg50.55. The transition curve indi-
cated byh1[h1(V) separates the Ising-SRO and the Ising-SB
phases. Symbols and solid lines are obtained by the Floquet an
sis and mode expansion analysis~see Sec. IV!, respectively.
3-5
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IV. MODE EXPANSION ANALYSIS AND PHASE DIAGRAM

First, we apply the Fourier expansion toX(t) andY(t),

X~ t !5 (
n52`

`

Xn~ t !einVt, Y~ t !5 (
n52`

`

Yn~ t !einVt,

~4.1!

whereX2n5Xn* and Y2n5Yn* . We assume that the coeffi
cients $Xn% and $Yn% have weak time dependence who
time scales are much longer thanT. Substituting Eq.~4.1!
into Eqs.~2.6! and ~2.7!, and comparing the coefficients i
both the right- and left-hand sides, we obtain

FIG. 6. Phase diagram forg520.05. The transition curve indi
cated byh2[h2(V) separates the Ising-SRO and theXY-SRO
phases. The meaning of symbols and solid line is the same a
Fig. 5.

FIG. 7. Phase diagram forg50.30. There are three transitio
curves,h2 , h3, andh4, separating four phases. TheXY-SBO phase
exists in a narrow region. The meaning of symbols and solid line
the same as in Fig. 5.
03612
Ẋn1 inVXn5~11g!Xn2(
l

(
m

XlXmXn2 l 2m

2(
l

(
m

YlYmXn2 l 2m

1
h

2
~dn,11dn,21!, ~4.2!

Ẏn1 inVYn5~12g!Yn2(
l

(
m

YlYmYn2 l 2m

2(
l

(
m

XlXmYn2 l 2m . ~4.3!

In the Ising-type oscillation, the imaginary componentY(t)
vanishes, and thereforeYl50 (l 50,61,62, . . . ). In the
SRO type oscillation, the relation~2.15! leads toXl50 (l
50,62,64, . . . ).

As the simplest approximation, we take into account o
the three modesn50 andn561. From Eqs.~4.2! and~4.3!,
the equations of motion for the moden50 are given by

Ẋ05~11g2X0
226uX1u22Y0

222uY1u2!X0

22~X1Y1* 1X1* Y1!Y0 , ~4.4!

Ẏ05~12g2Y0
226uY1u22X0

222uX1u2!Y0

22~Y1X1* 1Y1* X1!X0 . ~4.5!

Similarly, the equations for the moden51 are written as

Ẋ11 iVX15~11g23X0
22Y0

223uX1u222uY1u2!X1

22X0Y0Y12Y1
2X1* 1

h

2
, ~4.6!

Ẏ11 iVY15~12g23Y0
22X0

223uY1u222uX1u2!Y1

22X0Y0X12X1
2Y1* . ~4.7!

With the above simplest approximation, the stationa
state (Ẋj5Ẏj50) is determined by

05~11g2x0
226uX1

stu222uY1
stu2!x0

22~X1
stY1

st* 1X1
st* Y1

st!y02x0y0
2 , ~4.8!

05~12g2y0
226uY1

stu222uX1
stu2!y0

22~X1
stY1

st* 1X1
st* Y1

st!x02y0x0
2 , ~4.9!

where (X1
st,Y1

st) and (x0 ,y0) represent the stationary solu
tions of (X1 ,Y1) and (X0 ,Y0), respectively.

The symmetry argument in Sec. II leads to the followi
results.

~i! If the fixed pointx050, andy050 is stable, then the
attractor is the Ising-SRO trajectory, and the relationsY1

st

50 and (2 iV111g23uX1
stu2)X1

st1h/250 hold.

in

is
3-6
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~ii ! If the fixed pointsx0Þ0, andy050 are stable, then
the attractors are the Ising-SBO trajectories, and the relat
x056A11g26uX1

stu2, Y1
st50 and (2 iV111g23x0

2

23uX1
stu2)X1

st1h/250 hold.
~iii ! If the fixed pointsx050, andy0Þ0 are stable, then

the attractors are theXY-SRO trajectories, and the relation
y056A12g22uX1

stu2, Y1
st50 and (2 iV111g2y0

2

23uX1
stu2)X1

st1h/250 hold.
~iv! If the fixed pointsx0Þ0, andy0Þ0 are stable, the

attractors are theXY-SBO trajectories.
Now we consider the linear stability around the fix

points corresponding to the above stationary state. No
that the mode (X0 ,Y0) is relevant to the symmetry change
the oscillation, we assume that the relaxation time of
mode (X1 ,Y1) is faster than that of (X0 ,Y0), and we adia-
batically eliminateX1 and Y1. With this approximation,X1

andY1 are replaced byX1
st andY1

st , which are functions of
X0 and Y0. Denoting the deviation from one of the fixe
points asx5(j,h), i.e., theX0 and Y0 components being
replaced withX0(t)5x01j(t) andY0(t)5y01h(t) in Eqs.
~4.4! and ~4.5!, we obtain the linearized equationẋ5L(t)x
for the deviation, where the matrixL(t) has the elements.

L11511g23x0
22y0

226uX1
stu222uY1

stu2, ~4.10!

L125L21522~x0y01X1
stY1

st* 1X1
st* Y1

st!, ~4.11!

L22512g23y0
22x0

226uY1
stu222uX1

stu2. ~4.12!

By usingx(t)5eltx(0) @x(0)Þ0#, the solutions of the char
acteristic equation forl are given by

2l65L111L226A~L112L22!
214L12

2 . ~4.13!

It turns out that the characteristic equation always ha
couple of real roots because of the symmetry of the mat
On the transition curves, where the symmetry changes oc
the real part of the largest eigenvaluel1 vanishes, and, si
multaneously, L12 vanishes from x0y050 and Y1

st50.
Therefore, on the transition curves we get the relations

11g23x0
22y0

226uX1
stu250 for 2112g14y0

2.0,
~4.14!

12g23y0
22x0

222uX1
stu250 for 2112g14y0

2,0.
~4.15!

The transition curves in the (V,h) space are determine
by combining Eqs.~4.14! and ~4.15! with the results in~i!,
~ii !, and~iii !. After some algebraic operations, we obtain t
following results:

~i! For g> 1
2 , the transition curve is given by

h15A2

3
~11g!H V21S 11g

2 D 2J . ~4.16!

For h.h1, the Ising-SRO is stable, and the Ising-SBO
stable forh,h1.

~ii ! For g<0, the transition curve is written as
03612
ns
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h25A2~12g!H V21S 5g21

2 D 2J . ~4.17!

For h.h2, the Ising-SRO is stable, and theXY-SRO is
stable forh,h2.

~iii ! For 0,g, 1
2 , in addition to the same expression fo

h2, the transition curves are represented by

h35A2gS V21
9

4
g2D , h45A2gH V21S 11g24

2 D 2J .

~4.18!

We find that the Ising-SRO, theXY-SRO, theXY-SBO,
and the Ising-SBO are stable, respectively, forh.h2 , h3
,h,h2 , h4,h,h3, and h,h4. These results involve the
fundamental behaviors expected from the symmetry ar
ment. In Figs. 5, 6, and 7 the transition curves obtain
above are compared with the results of the Floquet analy
For the transition curve related to the Ising-type pha
~Fig. 5!, both results are quantitatively in agreement. Ho
ever, for the transition curves associated with other types
DPTs, i.e., Figs. 6 and 7, the deviations between both res
are rather large, although both results are qualitatively
agreement. This fact implies that the analysis based on
three modes approximation presented above is not accu
particularly in a low-frequency region. The analysis shou
be carried out by taking into account higher-order modes

V. LANDAU EXPANSIONS NEAR THE DPT

As is well known, in equilibrium thermodynamic phas
transitions the Landau expansion is a powerful approach
clarify the universality class of the phase transition. In th
section, we will carry out the Landau expansion with resp
to the order parameter near DPTs to study the characteri
of the transitions.

A. Near the DPT between Ising-SRO and Ising-SBO phases

In this subsection, we consider the dynamics near
DPT between the Ising-SRO and the Ising-SBO, which
observed forg> 1

2 . This transition can be discussed in
similar way to the DPT in the Ising spin system reported
Ref. @9#.

Let XR(t) be the Ising-SRO trajectory, which is eithe
stable or unstable. The Ising-SRO trajectory is numerica
found as follows. If the Ising-SRO is stable, then for a
initial condition one eventually obtains its trajectory. Whe
the Ising-SRO is unstable, its trajectory can be found
constructing the stroboscopic map for the Ising-type equa
of motion,

Ẋ~ t !5~11g2X2!X1h cos~Vt !. ~5.1!

For an arbitrary initial conditionX(0), theintegration of the
above equation untilt5T leads to a one-dimensional ma
X(T)5g@X(0)#, and, therefore,

X~ tn11!5g@X~ tn!# ~ tn5nT!, ~5.2!
3-7
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where g(X) is a nonlinear mapping function ofX, whose
form depends on bothh andV. As was discussed in Ref.@9#,
if the Ising-SRO is stable, there exists one fixed pointXf
with the slopeug8(Xf)u less than unity. On the other han
when the Ising-SRO is unstable and the Ising-SBOs
stable, there appear three fixed points, one of which,Xu with
ug8(Xu)u.1, gives the unstable Ising-SRO, and others
which, Xs,1 and Xs,2 with ug8(Xs,1)u5ug8(Xs,2)u,1, corre-
spond to the stable Ising-SBO. Numerical determination
Xu gives the initial condition for the unstable Ising-SRO tr
jectory.

Using X(t)5XR(t)1x(t), Y(t)50, and

x~ t !5QR~ t !j~ t !, QR~ t !5expF23E
0

t

$XR~s!22XR
2%dsG ,

~5.3!

we get

j̇~ t !5lj23XR~ t !QR~ t !j22QR~ t !2j3, ~5.4!

where

l511g23XR
2 ~5.5!

is the Floquet exponent of the Ising-SRO. When the Isi
SRO is stable~unstable!, l is negative~positive!. The Ā
stands for the time average ofA(t) over one periodT.

Near the DPT,l'0, and therefore the time scaleulu21 of
j is quite long. We can replace the coefficient ofj in Eq.
~5.4! by its time average over one periodT of the external
field. One thus obtains

j̇~ t !5lj2cj3 ~c5QR
2 !. ~5.6!

Here we used the fact that the symmetryXR(t)52XR(t
1T/2) leads toXRQR50. One thus finds thatjs , the aver-
age ofj over one periodT, is of orderAl}AV2V1 for V
slightly beyondV1, the DPT point between the Ising-SR
and the Ising-SBO. The comparison of the trajectory o
tained from Eq.~5.3! and Eq.~5.6! with that exactly obtained
from Eq. ~2.5! is made in Fig. 8. From the symmetry the
exist two Ising-SBO trajectories forX̄.0 andX̄,0. In the
figure, one of them corresponding to that forX̄.0 is drawn.
The period ofx derived from Eqs.~5.3! and~5.6! is T/2, and
the trajectory is surrounded by that obtained by numeric
integrating Eq.~2.5!. As the transition point is approache
the two trajectories tend to coincide with each other.

One should note that when the spatial variation of
order parameter exists, Eq.~5.6! should be replaced by

j̇~r,t !5lj2cj31¹2j. ~5.7!

Therefore, the DPT between the Ising-SRO and Ising-S
and the Ising-SBO belongs to the same universality clas
that of the Ising spin system in thermal equilibrium@9#. As
will be discussed in Sec. VI Eq.~5.7! has the Ne´el wall
solution.
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B. Near the DPT between Ising-type andXY-type oscillations

In this subsection, we consider the critical dynamics n
the DPT between the Ising-type motion and theXY-type
motion observed forg, 1

2 , i.e., ~i! the DPT between the
Ising-SRO and theXY-SRO, and~ii ! the DPT between the
Ising-SBO and theXY-SBO.

Let XI(t) be the motion with the Ising-type trajectory
either SRO and SBO. Near their DPTs, the insertion
X(t)5XI(t)1x(t), Y(t)5y(t) with

x~ t !5Q3~ t !j~ t !, y~ t !5Q1~ t !h~ t !, ~5.8!

Qn~ t ![expF2nE
0

t

$XI~s!22XI
2%dsG ~5.9!

into Eq. ~2.5! yields

j̇~ t !5l1j23XI~ t !Q3~ t !j22XI~ t !Q21~ t !h2

2@Q6~ t !j21Q2~ t !h2#j, ~5.10!

ḣ~ t !5l2h22XI~ t !Q3~ t !jh

2@Q6~ t !j21Q2~ t !h2#h, ~5.11!

where

l1511g23XI
2, l2512g2XI

2. ~5.12!

One should note that near the DPT,l2'0 and l1 keeps
negative, and thereforej decays faster thanh. By taking into
account this fact and using the estimationj5O(ul2u) and
h5O(Aul2u), Eqs.~5.10! and ~5.11! are simplified into

j̇~ t !5l1j2XI~ t !Q21~ t !h2, ~5.13!

ḣ~ t !5l2h22XI~ t !Q3~ t !jh2Q2~ t !h3. ~5.14!

FIG. 8. Comparison of the trajectory obtained with the Land
expansion~solid line! from Eq. ~5.6! with the exact one~broken
line! from Eq. ~2.5! near the DPT between Ising-SRO and Isin
SBO for the parameter values,g50.55,h51.0, andV50.525 57
5V111024, and x(t)5X(t)2XR(t),Y(t)50. The arrow shows
the movement of the phase point in the course of time.
3-8
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FIG. 9. Comparison of the trajectories obtained with the Landau expansion~solid lines! Eqs. ~5.13! and ~5.14! with the exact ones
~broken lines! from Eq. ~2.5! near the DPT between the Ising-type oscillation and theXY-type oscillation for the parameter values~a! g
50.30,h51.0, and V50.656 305V411024; and ~b! g50.30, h51.0, and V50.859 035V421024, and x(t)5X(t)2XI(t),y(t)
5Y(t)2YI(t). Arrows show the movement of the phase points in the course of time.
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Near the DPT point between the Ising-SRO and
XY-SRO, the Ising-SRO trajectory is obtained as follow
When the Ising-SRO is stable, one immediately gets its
jectory by simply integrating the original equation of motio
for an arbitrary initial condition.On the contrary, when it
unstable in the region where theXY-SRO stably exists, we
can obtain the unstable Ising-SRO trajectory by integrat
the equation of motion starting from an initial phase point
the axis Y50. The comparison of the trajectory obtaine
from Eqs.~5.8!, ~5.9!, ~5.13!, and~5.14! with that from Eq.
~2.5! for g.0 is made in Fig. 9~a!. The figure shows the
difference of the trajectory from the unstable orbit (XI ,0) just
after the DPT between the Ising-SRO and theXY-SRO. In
the figure, the trajectory forȲ.0 of two equivalentXY-SRO
attractors is shown.

When the spatial variation is taken into account,
should add the¹2j and ¹2h terms, respectively, in Eqs
~5.13! and~5.14!. If we use the approximation to replace th
coefficientsXI(t)Qn(t) (n521,3) andQ2(t), respectively,
by their time averages 0 andc2(.0), we get coupled equa
tions of motion forj(r,t) andh(r,t). Sincel1,0 near the
transition point,l2'0, andj eventually vanishes. Thus on
arrives at

ḣ~r,t !5l2h2c2h31¹2h. ~5.15!

This also confirms that the present transition also belong
the universality class of the Ising spin system in therm
equilibrium.

Figure 9~b! shows the difference of the trajectory from th
unstable orbit (XI ,0) just after the DPT between the Ising
SBO and theXY-SBO, where the Ising-SBO trajectory
obtained by integrating the equation of motion starting fro
a phase point onY50. In the figure, the trajectory forX̄
.0 and Ȳ.0 of four equivalentXY-SBO attractors is
shown. We find that the above approximations explain
exact dynamics quite well near the DPTs. It should be no
03612
e
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g

to
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e
d

that the difference between the exact trajectory and the
proximate one is more remarkable near the Ising-SBO
XY-SBO transition than near the Ising-SRO vsXY-SRO
transition. This is because in the former the Ising-SBO
XY-SBO transition is close to theXY-SRO vsXY-SBO tran-
sition, and the transition property of theXY-SRO vs
XY-SBO affects the Ising-SBO vsXY-SBO transition. In the
above simple treatment, however, we did not take into
count the inter-relation of each other.

In the case when there exists a spatial variation of
order parameter, we can repeat the previous treatment fo
DPT between the Ising-SRO and theXY-SRO. By usingan

[XIQn, the resulting equations obtained in this way are

j̇~r,t !5l1j2a21h21¹2j, ~5.16!

ḣ~r,t !5l2h22a3jh2c2h31¹2h. ~5.17!

One should note that in the present casean does not vanish
because the reference trajectory does not satisfyXI(t)5
2XI(t1T/2). Sincel1,0, one may adiabatically eliminat
j, the insertion of which into Eq.~5.17! leads to

ḣ~r,t !5l2h2S c21
2a21a3

l1
Dh31¹2h. ~5.18!

This equation has the meanings when the inequalityc2
12a21a3 /l1.0 holds. It is worth noting that although Eq
~5.16! and ~5.17! are different from the type of Ginzburg
Landau equation~5.15!, the enhancement of the difference
time scales sufficiently near DPT confirms that the redu
equations~5.16! and ~5.17! again can be reduced to th
Ginzburg-Landau equation~5.18!. This implies that the
present transition again belongs to the universality class
the Ising spin system.
3-9
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VI. SPATIAL VARIATION AND DOMAIN WALLS

There are two stable oscillating states both in the Isi
SBO phase and in theXY-SRO phase, and four stable osc
lating states in theXY-SBO phase. In this section, derivin
the fundamental equations of motion describing the spa
variation of a spin variable~order parameter!, we will discuss
domain walls connecting a couple of the stable oscillat
states in one dimension.

A. Domain walls in the Ising-SBO phase

Let CIB
6 denote spatially uniform period-T limit cycles in

the Ising-SBO phase, whereCIB
1 andCIB

2 indicate the oscil-

lations corresponding toX̄.0 and X̄,0, respectively. Let
X6(t)5@X6(t),0# stand for the spin variable of the Ising
SBO trajectoryCIB

6 at time t. We introduce the quantity
@a(t),b(t)# which is identical to (11,0) @(21,0)# when the
phase point is onCIB

1 (CIB
2 ) at time t. This quantity can be

extended to the case when there exists spatial variatio
spin variables. Namely, the variablesa(r,t) and b(r,t) de-
fined by

X~r,t !5
11a~r,t !

2
X1~ t !1

12a~r,t !

2
X2~ t !, ~6.1!

Y~r,t !5
X1~ t !2X2~ t !

2
b~r,t ! ~6.2!

measure how close the local order parameter@X(r,t),Y(r,t)#
is to the trajectory of eitherCIB

1 or CIB
2 . The insertion of Eqs.

~6.1! and ~6.2! into Eq. ~2.1! yields

ȧ~r,t !53 f ~ t !1g~ t !a2 f ~ t !~3a21b2!2g~ t !~a21b2!a

1¹2a, ~6.3!

ḃ~r,t !5h~ t !b22 f ~ t !ab2g~ t !~a21b2!b1¹2b,
~6.4!

with

f ~ t !5
1

4
@X1~ t !22X2~ t !2#,

g~ t !5
1

4
@X1~ t !2X2~ t !#2,

h~ t !5
1

4
@3X1~ t !212X1~ t !X2~ t !13X2~ t !228g#.

~6.5!

In order to see the long-time behavior ofa andb, we use
the approximation to replace temporally periodic coefficie
such asf (t) and g(t) in the above equations of motion b
their time averages over one period. The resulting equat
are given as

ȧ~r,t !5ḡa2ḡ~a21b2!a1¹2a, ~6.6!
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ḃ~r,t !5h̄b2ḡ~a21b2!b1¹2b. ~6.7!

Here we used the fact that the symmetryX2(t)52X1 (t
1T/2) yields f̄ 50. In addition to the spatially uniform so
lutions a561,b50, one finds that Eqs.~6.6! and~6.7! pos-
sess stationary domain wall solutions in a one-dimensio
system with the boundary condition@a(1`),a(2`)#5
(11,21) or (21,11) andb(6`)50. We find that there
are two types of domain walls. The first is the Ne´el wall, z
being the spatial coordinate,

a~z!56tanhS z2z0

j D , b~z!50, j5A2

ḡ
, ~6.8!

wherez0 is the position of the wall. One should note thatḡ is
always positive. The second is the Bloch wall

a~z!56tanhS z2z0

j D , b~z!56p sechS z2z0

j D ,

~6.9!

j5A 1

ḡ2h̄
, p5A2h̄2ḡ

ḡ
. ~6.10!

Of course, this solution has the meaning only when the
equality h̄,ḡ,2h̄ holds. We confirmed that for the param
eter values we used, except the DPT, this inequality ho
However, as the parameter value is approached to the tra
tion curveh1 ~Fig. 5!, ḡ,h̄ is satisfied. This fact implies tha
near the DPT only the Ne´el wall exists.

It turns out that these domain wall solutions reduce to
solutions in the absence of external fields in the zero fi
limit h→0, X6(t)→6A11g @Eq. ~2.8!#, i.e., we findf (t)
→0, g(t)→11g, and h(t)→12g in that limit, and thus
the solutions~6.8! and~6.9! agree with the walls in the zero
field.

B. Domain walls in the XY-SRO phase

Let CXYR
6 denote spatially uniform period-T limit cycles

in theXY-SRO phase, whereCXYR
1 andCXYR

2 indicate the

oscillations corresponding toȲ.0 and Ȳ,0, respectively.
Let X6(t)5@X0(t),Y6(t)# denote the spin variable of th
XY-SRO trajectoryCXYR

6 at timet. We introduce the quan
tity @a(t),b(t)# which takes the value (0,11) @(0,21)#
when the phase point is onCXYR

1 (CXYR
2) at time t. This

quantity can be also extended to the case when spatial v
tion of spin variables is present. Namely, the variablesa(r,t)
andb(r,t) defined by

X~r,t !5X0~ t !1
Y1~ t !2Y2~ t !

2
a~r,t !

5X0~ t !1Y1~ t !a~r,t !, ~6.11!
3-10
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Y~r,t !5
11b~r,t !

2
Y1~ t !1

12b~r,t !

2
Y2~ t !

5Y1~ t !b~r,t ! ~6.12!

measure how close the local order parameter@X(r,t),Y(r,t)#
is to eitherCXYR

1 or CXYR
2 . Here we used the fact tha

Y2(t)52Y1(t). Inserting Eqs.~6.11! and ~6.12! into Eq.
~2.1!, we obtain

ȧ~r,t !5h~ t !1@g~ t !2 f ~ t !#a2h~ t !~3a21b2!

2g~ t !~a21b2!a1¹2a, ~6.13!

ḃ~r,t !5g~ t !b22h~ t !ab

2g~ t !~a21b2!b1¹2b, ~6.14!

with

f ~ t !52@X0~ t !22g#,

g~ t !5Y1~ t !2,

h~ t !5X0~ t !Y1~ t !. ~6.15!

In order to see the long-time behavior ofa andb, we use
the approximation to replace temporally periodic coefficie
such asf (t) andg(t) by their time average values over on
period. The resulting equations are written as

ȧ~r,t !5~ ḡ2 f̄ !a2ḡ~a21b2!a1¹2a, ~6.16!

ḃ~r,t !5ḡb2ḡ~a21b2!b1¹2b. ~6.17!

Here we used the fact that the symmetriesX0(t)52X0(t
1T/2) andY1(t)5Y1(t1T/2) lead toh̄50.

Consider a one-dimensional system with the coordinatz.
It is easy to see that in addition to the stable spatially u
form solutionsa50,ubu51, Eqs.~6.16! and ~6.17! possess
stationary domain wall solutions for the boundary conditi
a(6`)50 and@b(1`),b(2`)#5(11,21) or (21,11).
Particularly, we find two types of domain walls. The first
the Néel wall

a~z!50, b~z!56tanhS z2z0

j D , j5A2

ḡ
.

~6.18!

The second is the Bloch wall

a~z!56p sech S z2z0

j D , b~z!56tanhS z2z0

j D ,

~6.19!

j5A1

f̄
, p5Aḡ22 f̄

ḡ
. ~6.20!
03612
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Needless to say,ḡ.0. For the parameter values we used,
find f̄ .0 andḡ.2 f̄ . Near the DPT, we findḡ,2 f̄ , which
implies that only the Ne´el wall is observed near the DPT.

The above domain walls are reduced to those without
oscillating external field. This can be shown as follow
Since in the limith→0, X0(t)→0, Y6(t)→6A12g @Eq.
~2.10!#, we find f (t)→22g, g(t)→12g, and h(t)→0 in
the zero field limit. Inserting the Ne´el wall solution ~6.18!
into Eqs.~6.11! and ~6.12!, we obtain the Ne´el wall in the
zero field. In a similar way, inserting the Bloch wall solutio
~6.19! into Eqs.~6.11! and ~6.12!, one arrives at the Bloch
wall solution without an oscillating external field.

C. Domain walls across theX axis in the XY-SBO phase

Let CXYB j ( j 51,2,3,4) be spatially uniform period-T
limit cycles in theXY-SBO phase. HereCXYB1 denotes the
oscillation for X̄.0 andȲ.0, CXYB2 for X̄.0 andȲ,0,
CXYB3 for X̄,0 andȲ,0, andCXYB4 for X̄,0 andȲ.0.
The quantityXj (t)5@Xj (t),Yj (t)# stands for the spin vari-
able of theXY-SBO trajectoryCXYB j . Since the local oscil-
lation is one of four limit cyclesCXYB j ( j 51,2,3,4), we have
to take into account the coexistence of these four oscilla
states. However, for simplicity, in this paper we discuss o
the coexistence of two of the four oscillatory states.

First we consider the domain walls connectingCXYB1 and
CXYB2. From the symmetry of the solutions, those forCXYB4
and CXYB3 can be considered in the same way as those
CXYB1 andCXYB2. Let @a(t),b(t)# be the quantity that take
the value (0,11) @(0,21)# when the phase point is o
CXYB1 (CXYB2) at timet. a(t) andb(t) are extended so as t
include the position dependence when there exists sp
variation. Namely, the quantitiesa(r,t) and b(r,t) defined
by

X~r,t !5X1~ t !1
Y1~ t !2Y2~ t !

2
a~r,t !5X1~ t !1Y1~ t !a~r,t !,

~6.21!

Y~r,t !5
11b~r,t !

2
Y1~ t !1

12b~r,t !

2
Y2~ t !5Y1~ t !b~r,t !

~6.22!

measure how close the local order parameter@X(r,t),Y(r,t)#
is to either CXYB1 or CXYB2. Here we used the fact tha
Y2(t)52Y1(t). Inserting Eqs.~6.21! and ~6.22! into Eq.
~2.1!, after some algebra we get

ȧ~r,t !5h~ t !1@g~ t !2 f ~ t !#a2h~ t !~3a21b2!

2g~ t !~a21b2!a1¹2a, ~6.23!

ḃ~r,t !5g~ t !b22h~ t !ab

2g~ t !~a21b2!b1¹2b, ~6.24!

with

f ~ t !52@X1~ t !22g#,
3-11
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g~ t !5Y1~ t !2,

h~ t !5X1~ t !Y1~ t !. ~6.25!

In order to observe the long-time behavior ofa and b, we
replace temporally periodic coefficients such asf (t) and
g(t) by their time averages. The resulting equations
given as

ȧ~r,t !5h̄1~ ḡ2 f̄ !a2h̄~3a21b2!2ḡ~a21b2!a1¹2a,
~6.26!

ḃ~r,t !5ḡb22h̄ab2ḡ~a21b2!b1¹2b. ~6.27!

Consider a one-dimensional system with the spatial co
dinatez. Figure 10 shows the steady-state pattern obtai
from numerical integration of the above equations of mot
with the boundary conditionsua(6`)u50,ub(6`)u51 for
the parametersg50.30,h51.0,V50.85. We conclude tha
the solution observed in this case is thus the Bloch type w

D. Domain wall across theY axis in the XY-SBO phase

Next let us consider the coexistence ofCXYB1 andCXYB4.
From the symmetry of the solutions, domain walls conne
ing CXYB2 and CXYB3 can be studied in the same way
those in the preceding subsection. Let@a(t),b(t)# be (11,
11) @(21,21)# when the phase point is onCXYB1 (CXYB4)
at time t. The quantitiesa(t) and b(t) are extended to the
case when there exists spatial variation. The quantitiesa(r,t)
andb(r,t) defined by

X~r,t !5
11a~r,t !

2
X1~ t !1

12a~r,t !

2
X4~ t !, ~6.28!

Y~r,t !5
11b~r,t !

2
Y1~ t !1

12b~r,t !

2
Y4~ t ! ~6.29!

measure how close the local order parameter@X(r,t),Y(r,t)#
is to eitherCXYB1 or CXYB4.

FIG. 10. Numerical solution of Eqs.~6.26! and ~6.27!, which
corresponds to the boundary conditiona(6`)50,b(6`)561.
Solid and broken lines, respectively, denoteb(z) and a(z). The
parameters areg50.30,h51.0,V50.85
03612
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Inserting Eqs.~6.28! and~6.29! into Eq. ~2.1!, after some
algebra we get

ȧ~r,t !5 f 1~ t !1 f 2~ t !a2 f 3~ t !b23 f 4~ t !a22 f 5~ t !b2~ t !

22 f 6~ t !ab2 f 7~ t !a32 f 8~ t !ab21¹2a, ~6.30!

ḃ~r,t !5g1~ t !1g2~ t !b2g3~ t !a23 f 6~ t !b22g5~ t !a2~ t !

22 f 4~ t !ba2 f 8~ t !b32 f 7~ t !ba21¹2b, ~6.31!

with

f 1~ t !5
3

4
@X1~ t !22X4~ t !2#

2
@X1~ t !1X4~ t !#@Y1~ t !1Y4~ t !#2

4@X1~ t !2X4~ t !#

1
Y1~ t !2X1~ t !1Y4~ t !2X4~ t !

X1~ t !2X4~ t !
,

f 2~ t !5
1

4
@X1~ t !2X4~ t !#22

1

4
@Y1~ t !1Y4~ t !#2

1
Y1~ t !2X1~ t !2Y4~ t !2X4~ t !

X1~ t !2X4~ t !
,

f 3~ t !5
@X1~ t !1X4~ t !#@Y1~ t !22Y4~ t !2#

2@X1~ t !2X4~ t !#
,

f 4~ t !5
1

4
@X1~ t !22X4~ t !2#,

f 5~ t !5
@X1~ t !1X4~ t !#@Y1~ t !2Y4~ t !#2

4@X1~ t !2X4~ t !#
,

f 6~ t !5
1

4
@Y1~ t !22Y4~ t !2#,

f 7~ t !5
1

4
@X1~ t !2X4~ t !#2, f 8~ t !5

1

4
@Y1~ t !2Y4~ t !#2,

g1~ t !5
3

4
@Y1~ t !22Y4~ t !2#

2
@Y1~ t !1Y4~ t !#@X1~ t !1X4~ t !#2

4@Y1~ t !2Y4~ t !#

1
X1~ t !2Y1~ t !1X4~ t !2Y4~ t !

Y1~ t !2Y4~ t !
,

g2~ t !5
1

4
@Y1~ t !2Y4~ t !#22

1

4
@X1~ t !1X4~ t !#2

1
X1~ t !2Y1~ t !2X4~ t !2Y4~ t !

Y1~ t !2Y4~ t !
,

3-12
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g3~ t !5
@Y1~ t !1Y4~ t !#@X1~ t !22X4~ t !2#

2@Y1~ t !2Y4~ t !#
,

g5~ t !5
@Y1~ t !1Y4~ t !#@X1~ t !2X4~ t !#2

4@Y1~ t !2Y4~ t !#
. ~6.32!

Here the coefficients satisfy

f 2~ t !2 f 3~ t !5g2~ t !2g3~ t !

5 f 7~ t !1 f 8~ t !

5
1

4
@X1~ t !2X4~ t !#21

1

4
@Y1~ t !2Y4~ t !#2

[h~ t !. ~6.33!

In order to see the long-time behavior ofa and b, we
replace temporally periodic coefficients$ f i(t)% and $gi(t)%
of the above equations of motion by their time averages.
resulting equations are found to be

ȧ~r,t !5 f̄ 2~a2b!1~ f̄ 71 f̄ 8!b2~ f̄ 7a21 f̄ 8b2!a1¹2a,
~6.34!

ḃ~r,t !5ḡ2~b2a!1~ f̄ 71 f̄ 8!a2~ f̄ 7a21 f̄ 8b2!b1¹2b.
~6.35!

Here we used the fact that the symmetry@X4(t),Y4(t)#5

@2X1(t1T/2),Y1(t1T/2)# leads to f̄ 15 f̄ 45 f̄ 55 f̄ 65ḡ1

5ḡ550. We carried out numerical integration of Eqs.~6.34!
and~6.35! for g50.3 andh51 with three different values o
V in one dimension, for five different initial conditions o
$a(z,0),b(z,0)% for each value of the set ofg, h, V. All the
numerical integrations ultimately give the resulta(z,t)
5b(z,t) for the whole space. One easily confirms the ex
tence of this particular solution. Noting this fact, we consid
the particular case,a(r,t)5b(r,t). Equations ~6.33! and
~6.34! are reduced to

ȧ~r,t !5h̄a2h̄a31¹2a. ~6.36!

For a one-dimensional system, Eq.~6.36! possesses th
stationary kink and antikink solutions for the boundary co
dition ua(6`)u51,

a~z!5b~z!56tanhS z2z0

j D , j5A2

h̄
. ~6.37!

It should be noted that the particular solutiona(r,t)
5b(r,t) for any r exists only for Eqs.~6.34! and~6.35!, but
not for Eqs.~6.30! and ~6.31!.

E. Domain walls betweenCXYB1 and CXYB3 in the XY-SBO
phase

Finally we consider the coexistence ofCXYB1 andCXYB3.
From the symmetry of the solutions, domain walls conne
ing CXYB2 andCXYB4 can be discussed in the same way
those forCXYB1 and CXYB3. Let @a(t),b(t)# be a quantity
03612
e

-
r

-

t-
s

that takes the value (11,11) @(21,21)# when the phase
point is onCXYB1 (CXYB3) at timet. The quantitiesa(t) and
b(t) are extended to the case when there exist spatial va
tions. The variablesa(r,t) andb(r,t) defined by

X~r,t !5
11a~r,t !

2
X1~ t !1

12a~r,t !

2
X3~ t !, ~6.38!

Y~r,t !5
11b~r,t !

2
Y1~ t !1

12b~r,t !

2
Y3~ t ! ~6.39!

measure how close the local order parameter@X(r,t),Y(r,t)#
is to eitherCXYB1 or CXYB3. Inserting Eqs.~6.38! and~6.39!
into Eq.~2.1!, after some algebra we obtain the equations
same as Eqs.~6.30!, ~6.31!, ~6.32!, and ~6.33! with the re-
placement ofX4(t) by X3(t) and Y4(t) by Y3(t) in Eqs.
~6.32! and ~6.33!.

In order to see the long-time dynamics ofa and b, we
replace temporally periodic coefficients of the equations
a and b by their time averages. One easily finds that t
equations of motion fora andb with the averaged coefficien
again yield the particular solutiona(r,t)5b(r,t). This fact
makes us consider the particular casea(r,t)5b(r,t). In this
case, we obtain the equation the same as Eq.~6.36!. In a
one-dimensional system with the coordinatez, the equation
for a possesses the stationary kink and antikink solutions
the boundary conditionua(6`)u51 which has the same
form as Eq.~6.37!.

An alternative discussion on the domain walls for sp
variables themselves is given in Appendix B.

VII. SUMMARY AND CONCLUDING REMARKS

In the present paper, we discussed DPTs in the anisotr
XY spin system in a periodically oscillating magnetic fie
below the critical temperatureTc , using the Ginzburg-
Landau equation with an oscillating magnetic field.

In the first half of the present paper, we studied types
spatially uniform oscillation, dropping out the¹2c term. Af-
ter discussing the particular symmetries of the present
tem, we examined the stability of the SRO for different va
ues of the amplitudeh and the frequencyV of the external
field. This was done by numerically calculating the large
Floquet exponent of the particular oscillation. Thus we o
tained the phase diagram in the space spanned byV andh. It
was found that there are at most four types of oscillatio
depending on the magnitude of the anisotropy parameteg.

Furthermore, we developed the Landau expansion of
equation of motion near several kinds of DPTs to clarify th
universality classes. All the transitions seem to be the sa
as that of the Ising spin system in thermal equilibrium. Ho
ever, since we used the Landau equation with the tim
averaged coefficients, some of the characteristic feature
the DPTs might be lost. This is one of the future problems
studying explicit oscillatory characteristics of the DPTs.

In the second half of the present paper, we discussed
sible forms of the domain walls connecting several types
dynamical phases in a one-dimensional system, employ
the variablesa andb to parametrize the domain structure.
3-13
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the Ising-SBO phase with a positive anisotropy and also
the XY-SRO phase for a negative anisotropy, it turned
that possible forms of the domains are described with
Néel wall and the Bloch wall known in the anisotropicXY
spin system without an external field. Furthermore, the w
structure in theXY-SBO phase is found to be different from
the ordinary Bloch wall form. Although we reported possib
types of domain walls in the present paper, their precise
bility should be examined in the future.

In comparison with the DPT observed in the Ising sp
systems, there are several differences in the DPTs in the
isotropic XY spin system. First, in contrast to that there
only one DPT in the Ising spin system, there can exist th
kinds of DPTs, depending on the magnitude of the anisotr
parameterg. This fact is due to the existence of four dynam
cal phases in the present system: Ising-SRO, Ising-S
XY-SRO, andXY-SBO. The second is about the universal
class of DPTs. In a previous paper@9#, we confirmed that the
DPT observed in the Ising spin system belongs to the s
universality class as that of the Ising spin system of conv
tional critical phenomena in thermodynamic equilibrium
This was shown by deriving the Landau-type effective eq
tion of motion around the SRO near the DPT. As shown
Sec. III, however, associated with the transitions betw
Ising-SRO andXY-SRO and also the transition betwee
Ising-SBO andXY-SBO, the number of order paramete
relevant to the transition changes. The third is the possib
of the existence of the DPT aboveTc . Examining the Flo-
quet exponent of the SRO, one can prove that there exist
DPT in the Ising spin system aboveTc . However, we canno
prove the nonexistence of DPTs in the anisotropic XY s
system in an oscillating field aboveTc . The fourth difference
is about the form of domain walls. In the Ising spin syste
the domain wall is the Ne´el wall. On the contrary, in the
anisotropicXY spin system, one observes the Bloch wall
well as the Ne´el wall which connect two oscillatory domains

In the SBO phase of the Ginzburg-Landau equation in
oscillating field ~1.1!, the switching phenomenon betwee
two SBO phases in the presence of thermal noise has
reported@9#. It is expected that the presence of thermal no
may cause the switching phenomena between several k
of dynamical phases in the present system. The study on
subject is left for a future study. Furthermore, study on
ordering process beyond the DPTs in this system is an in
esting problem. This is left for a future study, as well. T
study of anisotropic spin system with an oscillating magne
field is quite interesting, and is important from the viewpo
of nonlinear-nonequilibrium dynamics of spin systems. E
perimental study as well as theoretical study is strongly
pected to be carried out@12#.

Note added in proof.Very recently, Monte Carlo studie
of the dynamic phase transition in a ferromagnetic ani
tropic Heisenberg spin system in an oscillating magne
field in a thin film were carried out in@12#.
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APPENDIX A: ASYMPTOTIC SOLUTIONS FOR A WEAK
FIELD OR A HIGH FREQUENCY

In this appendix, the perturbation expansion of asympto
solutions for a weak field or a high frequency are brie
described.

1. Oscillation in a weak field

In a weak external field the dynamics shows small am
tude oscillations around the stable zero-field fixed poi
Xss5(Xss,Yss). By expanding the deviationsX2Xss, Y
2Yss in the power series ofh, and by inserting these expres
sions into Eq.~2.5!, the low-order equations inh yield the
perturbation equations of motion for the deviations. The
sults are summarized as follows.

Case A. g.0. To the lowest order with respect toh, the
equations of motion are solved as

S X~ t !

Y~ t !
D 5S 6A11g1x1~ t !h

0
D , ~A1!

x1~ t !5
1

A4~11g!21V2
cos~Vt2a1!, ~A2!

tana15
V

2~11g!
.

Equations~A1! and ~A2! have the Ising-SBO symmetry
These trajectories are compared in Fig. 11~a! with those from
the original equation of motion~2.5!. One finds that the dy-
namics under a weak field forg.0 is well approximated by
Eqs.~A1! and ~A2!.

Case B. g50. By putting c5reiu, r and u being the
amplitude and the phase, respectively, and by inserting
expansion

r511a1h1a2h21••• ~A3!

into Eq. ~2.5!, the lowest-order equations are determined

u̇~ t !52h~12a1h!cos~Vt !sinu, ~A4!

ȧ1~ t !522a11cos~Vt !cosu. ~A5!

The expansion coefficientsa2, etc., are successively ob
tained, e.g., as

ȧ2~ t !522a223a1
2 . ~A6!

Case C. g,0. To the lowest order with respect toh, the
equations of motion are solved as

S X~ t !

Y~ t !
D 5S x1~ t !h

6@A12g1y2~ t !h2#
D , ~A7!

x1~ t !5
1

A4g21V2
cos~Vt2a2!, ~A8!

y2~ t !5A1B cos~2Vt2a3!, ~A9!

tana25
V

2g
, tana35

V~V224g!

~3g11!V214g2~g21!
,

3-14
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FIG. 11. Comparison of the approximate trajectories~solid lines! with the exact ones~broken lines! for a weak amplitude forx5X
2Xss andy5Y2Yss, where the parameter values are~a! g50.30, h50.01, andV51.0, and~b! g520.05, h50.01, andV51.0. Arrows

show the movement of the phase points in the course of time. In~a!, one of the two symmetric Ising-SBO trajectories withX̄.0 is plotted.

In ~b!, one of the two symmetricXY-SRO trajectories withȲ.0 is plotted.
-
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A52
A12g

4~4g21V2!~12g!
,

B

5
A~12g!$@~3g11!V214g2~g21!#21V2~V224g!2%

@4~12g!214V2#~4g21V2!2
.

These equations have theXY-SRO symmetry. The com
parison of the trajectory obtained from Eqs.~A7!, ~A8!, and
~A9! with that from Eq.~2.5! is made in Fig. 11~b!. One finds
that the dynamics under a weak field forg,0 is well ap-
proximated by Eqs.~A7!, ~A8!, and~A9!.

2. Oscillation in a high-frequency region

Let us consider the asymptotic dynamics for a hig
frequency region. Numerical simulation shows that the s
is almost perpendicular to the applied field for a sufficien
large frequency. This is because the spin variable canno
multaneously follow the rapid change of the applied fie
Furthermore, it is observed that the Ising-SBO and
XY-SRO stably exist, respectively, forg.0 and forg<0 in
a high-frequency field. These observations suggest the us
following expansion:

H X~ t !56A11g1x~ t !

~g.0!,

Y~ t !50

~A10!
03612
-
n
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e

of

X~ t !5x~ t !,
~A11!

Y~ t !56A12g1y~ t !~g<0!,

with small ux(t)u and uy(t)u. The dynamics of the perturba
tions x and y with the mode expansion are summarized
follows.

Case A. g.0. With the mode expansionx(t)5x0(t)
1x1(t)ei t1x1* (t)e2 i t (t[Vt) by discarding high-
frequency modes, and by making use of the evaluationx0

5O(x1
2), we obtain

dx0~t!

dt
5e~22a1

2 x026a1ux1u2!, ~A12!

dx1~t!

dt
1 ix15eS 22a1

2 x126a1x0x11
h

2D , ~A13!

wherea156A11g ande[V21. The steady-state solutio
is given asx1'2 ihe/2 andx0523h2e2/4a1 , and there-
fore one obtains

X~ t !'a11
h

V
sin~Vt !2

3

4a1
S h

V D 2

, ~A14!

up toO(V22!, andY(t)50. One can easily prove the linea
stability of the above solution. The comparison of the traje
tory obtained from Eq.~A14! with that from Eq. ~2.5! is
made in Fig. 12~a!. In the figure, from the symmetry of th
Ising-SBO solutions, there exists another trajectory, which
not shown in Fig. 12~a!. One finds that Eq.~A14! gives quite
a good approximation forg.0 in a high-frequency region.

Case B. g<0. With the expansionx(t)5x1(t)ei t

1x1* (t)e2 i t and y(t)5y0(t)1y2(t)e2i t1y2* (t)e22i t (t
5Vt), we get
3-15
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FIG. 12. Comparison of the
approximate trajectories ~solid
lines! with the exact ones~broken
lines! for a high-frequency oscilla-
tion for x5X2Xss and y5Y
2Yss, where the parameter value
are ~a! g50.30, h51.00, V
520.0 and ~b! g520.05, h
51.00, V520.0. Arrows show
the movement of the phase poin
in the course of time.
e

e
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e

i-
dx1~t!

dt
1 ix15eS 23ux1u2x122a2x1y0

22a2x1* y212gx11
h

2D , ~A15!

dy0~t!

dt
52e~2a2

2 y012a2ux1u2!, ~A16!

dy2~t!

dt
12iy252e~2a2

2 y21a2x1
2!, ~A17!

wherea256A12g and e5V21. Solving the steady stat
solution of the above equation, we obtain

X~ t !5
h

V
sin~Vt !, Y~ t !5a22

1

4a2
S h

V D 2

1
ha2

4V3
sin~2Vt !

~A18!

up to O(V23). After a slight calculation, one can prove th
linear stability of the above solution. The comparison of t
trajectory obtained from Eq.~A18! with that from Eq.~2.5!
is made in Fig. 12~b!. From the symmetry of theXY-SRO
solutions, there exists another trajectory, which is not sho
in Fig. 12~b!. One finds that Eq.~A18! gives quite a good
approximation forg<0 in a high-frequency region.

APPENDIX B: MODE EXPANSION ANALYSIS FOR
DOMAIN WALL SOLUTIONS

Topological kinks or domain wall solutions for Eq.~2.1!
in a one-dimensional system are again discussed fro
slightly different viewpoint by employing the mode expa
sion analysis discussed in Sec. IV. In this appendix, the sp
coordinate is represented byx.

There is a possibility that the entire spatial configurat
oscillates along the one-dimensional axis in response to
oscillating field. This may be taken into account by introdu
ing the time-dependent ‘‘drift velocity’’v(t). Thus using the
moving flame,z5x2x0(t), whose coordinate center is tim
dependent with the velocityv(t)5 ẋ0(t), let us replace
c(x,t) with c@x2x0(t),t# in Eq. ~2.1!. Then, the time and
spatial derivatives ofc are replaced as] tc→] tc2v]zc and
03612
e

n

a

ce
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¹c→¹zc. The equations of motion for the real and imag
nary components are given by

] tX2v~ t !¹zX5X2~X21Y2!X1gX1¹z
2X1h cos~Vt !,

~B1!

] tY2v~ t !¹zY5Y2~X21Y2!Y2gY1¹z
2Y. ~B2!

Let us expandX andY in terms of Fourier components as

X~z,t !5 (
n52`

`

Xn~z,t !einVt, Y~z,t !5 (
n52`

`

Yn~z,t !einVt,

~B3!

whereXn5X2n* and Yn5Y2n* . Likewise, v(t) is expanded
as

v~ t !5 (
n52`

`

vneinVt, vn5v2n* . ~B4!

The substitution of these expansions into Eqs.~B1! and~B2!
yields a set of equations forXn(z,t) andYn(z,t),

Ẋn1 inVXn5(
n1

vn1
¹zXn2n1

1~11g!Xn

2 (
n1 ,n2

Xn1
Xn2

Xn2n12n2

2 (
n1 ,n2

Yn1
Yn2

Xn2n12n2
1¹z

2Xn

1
h

2
~dn,11dn,21!, ~B5!

Ẏn1 inVYn5(
n1

vn1
¹zYn2n1

1~12g!Yn

2 (
n1 ,n2

Yn1
Yn2

Yn2n12n2

2 (
n1 ,n2

Xn1
Xn2

Yn2n12n2
1¹z

2Yn . ~B6!
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Hereafter, we use the simplest approximation to ret
only the modesn50,61. As seen in Sec. IV, this set o
modes is the minimum one describing DPTs. The equati
of motion for n50 in Eqs.~B5! and ~B6! are given as

Ẋ05v0¹zX01v21¹zX11v1¹zX211@11g26uX1u2

22uY1u2#X02~X0
21Y0

2!X0

22~X1Y211X21Y1!Y01¹z
2X0 , ~B7!

Ẏ05v0¹zY01v21¹zY11v1¹zY211@12g26uY1u2

22uX1u2#Y02~Y0
21X0

2!Y0

22~Y1X211Y21X1!X01¹z
2Y0 . ~B8!

Likewise, those forn51 are written as

Ẋ11 iVX15v0¹zX11v1¹zX01@11g23X0
2

22uY1u22Y0
2#X123uX1u2X122X0Y0Y1

2Y1
2X211¹z

2X11
h

2
, ~B9!

Ẏ11 iVY15v0¹zY11v1¹zY01@12g23Y0
2

22uX1u22X0
2#Y123uY1u2Y122X0Y0X1

2X1
2Y211¹z

2Y1 . ~B10!

Now we focus our attention to domain wall solutions, a
regardz as the one-dimensional coordinate. The bound
conditions for the sets of the field variables (X0 ,Y0) and
(X1 ,Y1) in a single-wall configuration are given as

~X0 ,Y0!→~X0
6 ,Y0

6!, ~X1 ,Y1!→~X1
6 ,Y1

6!, ~B11!

where each of the superscript6 specifies the boundary valu
of (Xj ,Yj ) ( j 50,1) at each of boundariesz→6`. It is natu-
ral to impose that the boundary values (Xj ,Yj ) ( j 50,1) be-
long to the uniform stationary solutions of Eqs.~B7!, ~B8!,
~B9!, and ~B10!. Thus the boundary values are determin
by

05@11g26uX1
6u222uY1

6u22~X0
621Y0

62!#X0
6

22~X1
6Y21

6 1X21
6 Y1

6!Y0
6 , ~B12!

05@12g26uY1
6u222uX1

6u22~Y0
621X0

62!#Y0
6

22~Y1
6X21

6 1Y21
6 X1

6!X0
6 , ~B13!

2
h

2
5@11g2 iV23X0

622Y0
6222uY1

6u223uX1
6u2#X1

6

2~2X0
6Y0

61Y1
6X21

6 !Y1
6 , ~B14!

05@12g2 iV23Y0
622X0

6222uX1
6u223uY1

6u2#Y1
6

2~2X0
6Y0

61X1
6Y21

6 !X1
6 . ~B15!
03612
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Here the roots forX0
6 and Y0

6 are degenerate, and satis
uX0

1u5uX0
2u and uY0

1u5uY0
2u from the symmetry.

We use the boundary conditionsX0
252X0

1 and Y0
650

for the Ising-SBO phase, andX0
650, Y0

252Y0
1 for the

XY-SRO phase. In addition,Y1
650 holds for both phases

SubstitutingX0
6Y0

650 andY1
650 into Eq.~B14!, we obtain

X1
652

hei tan21(V/A6)

2AV21A6
2

,

A6[11g23uX0
6u22Y0

6223uX1
6u2. ~B16!

Thus it is found thatX1 is uniquely determined and commo
at both boundaries in both Ising-SBO andXY-SRO phases,
i.e., X1

15X1
2 , sinceX1

6 are functions ofuX0
6u and uY0

6u.
The boundary conditions for theXY-SBO phases are

somewhat complicated, sinceY1
6Þ0 and X0

6Y0
6Þ0. We

have a possibility to use the following three different boun
ary conditions forX0 andY0:

~ i! ~X0
2 ,Y0

2!5~X0
1 ,2Y0

1!,

~ ii ! ~X0
2 ,Y0

2!5~2X0
1 ,Y0

1!,

~ iii ! ~X0
2 ,Y0

2!5~2X0
1 ,2Y0

1!. ~B17!

It is natural to require that the boundary condition forX1
6 is

the same at both boundaries, i.e.,X1
15X1

2 , as a physically
preferable state. For case~i!, from Eqs.~B14! and ~B15!, to
take the boundary condition forY1 so as to have the sam
parity asY0, i.e., Y1

15(Y0
2/Y0

1)Y1
2 , allows us to set the

condition X1
15X1

2 . Similarly, for case ~ii !, to take the
boundary condition forY1 so as to have the same parity
X0, i.e., Y1

15(X0
2/X0

1)Y1
2 , allows us to set the condition

X1
15X1

2 . For case~iii !, the simplest boundary conditions fo
X1 andY1 areX1

15X1
2 andY1

15Y1
2 . Therefore, the condi-

tions Y1
15(X0

2Y0
2/X0

1Y0
1)Y1

2 and X1
15X1

2 satisfy all the
cases includingY1

650. This also indicates thatY1 necessar-
ily has a kink structure when eitherX0 or Y0 has a domain
wall structure in theXY-SBO phase.

In the Ising-SBO andXY-SRO phases, the lowest-orde
variables for describing a domain wall configuration areX0
and Y0, while, in the XY-SBO phase,Y1 also participates
with them for the boundary conditions~i! and ~ii !. In the
following, we will deal with the domain wall solutions fo
the Ising-SBO phase,XY-SRO phase, and also with the ca
for the boundary condition~iii ! in the XY-SBO phase. For
these situations, the domain wall solutions forX0 andY0 are
approximated by regardingX1 and Y1 as uniform in Eqs.
~B7! and ~B8!. SubstitutingX15X1

1 and Y15Y1
1(5Y1

2)
into Eqs. ~B7! and ~B8!, the equation determining the do
main wall solution forc05X01 iY0 is written as

2v0]zc05c0c02uc0u2c01g0c0* 1]z
2c0 , ~B18!

c05124uX1
1u224uY1

1u2, ~B19!
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g05g22uX1
1u212uY1

1u222i ~X1
1Y21

1 1X21
1 Y1

1!,
~B20!

where the boundary values@X0(z56`),Y0(z56`)#5
(6X0

1 ,6Y0
1) and (X1

1 ,Y1
1) must satisfy Eqs.~B14! and

~B15!. In Eq. ~B20! the effective anisotropy parameterg0 is
complex if Y1

1Þ0, whose phase defined byg05ug0ue2iu0 is
determined as

tan 2u0522
X1

1Y21
1 1X21

1 Y1
1

g22uX1
1u212uY1

1u2
. ~B21!

Since for one value ofY1
1 there is another degenerate val

2Y1
1 , the phaseu0 has two opposite values.

By replacing the phase ofc0 asc05c̃0eiu0, we hereafter
solve Eq.~B18! for c̃0. In order to determinev0, multiplying
Eq. ~B18! by ]zc̃0* and adding its complex conjugate to
we get

22v0u]zc̃0u25]zm~z!, ~B22!

where

m~z!5c0uc̃0u22
1

2
uc̃0u41

1

2
ug0u~ c̃0*

21c̃0
2!1u]zc̃0u2.

~B23!

By integrating both sides fromz52` to `, v0 is deter-
mined as

v052
1

2s
@m~`!2m~2`!#, s[E

2`

`

dzu]zc̃0u2.

~B24!
tt.

-
.

,

03612
Here the condition c̃0(z52`)52c̃0(z5`) leads to
m(`)5m(2`), and therefore we getv050. Equation
~B18!, using v050, yields domain wall solutions whenc0
.0, which turn out to have the following two types of solu
tions:

c̃0
I ~z!5Ac01ug0utanh@A~c01ug0u!/2z# ~ ug0u.c0/3!,

~B25!

c̃0
B~z!5XBtanh~z/jB!6 iYBsech~z/jB! ~0,ug0u,c0/3!,

~B26!

whereXB5Ac01ug0u, YB5Ac023ug0u, jB51/A2ug0u, and
the corresponding solutions forc0 are obtained asc0

5c̃0eiu0.
We can perturbatively get the solution by incorporati

the spatial variation ofX1 and Y1. Namely, denoting the
solutions obtained above asc0

(0) andc1
(0) , we can expandc0

andc1 as

c05c0
(0)1ec0

(1)1e2c0
(2)1•••,

c15c1
(0)1ec1

(1)1e2c1
(2)1•••,

v05v0
(0)1ev0

(1)1e2v0
(2)1•••,

v15v1
(0)1ev1

(1)1e2v1
(2)1•••, ~B27!

with a certain smallness parametere, and then calculate
quantitiesc j

l , v j
l ( l 51,2, . . . )order by order in power ofe.

For the Ising-SBO andXY-SRO phases,v1
(0) vanishes in the

lowest-order approximation, since we assumed thatX1 and
Y1 are uniform. For that case the series expansion forv1
begins with the ordere.
ics,
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@1# T. Tomé, and M.J. de Oliveira, Phys. Rev. A41, 4251~1990!.
@2# J.F.F. Menders, and E.J.S. Large, J. Stat. Phys.64, 653~1991!.
@3# M. Acharyya, Phys. Rev. E56, 2407~1997!.
@4# S.W. Sides, P.A. Rikvold, and M.A. Novotny, Phys. Rev. Le

81, 834 ~1998!.
@5# S.W. Sides, P.A. Rikvold, and M.A. Novotny, Phys. Rev. E59,

2710 ~1999!.
@6# P.A. Rikvold et al., in Computer Simulation Studies in Con

densed Matter Physics XIII, edited by D. P. Landau, S. P
Lewis, and H.-B. Schuttler,~Springer, Berlin, 2000!, pp. 105–
119.

@7# G. Korniss, C.J. White, P.A. Rikvold, and M.A. Novotny
Phys. Rev. E63, 016120~2001!.
@8# G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett.55,

2527 ~1985!.
@9# H. Fujisaka, H. Tutu, and P.A. Rikvold, Phys. Rev. E63,

036109~2001!.
@10# M. Yamamoto, Master thesis, Graduate School of Informat

Kyoto University, 2001.
@11# J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dy-

namical Systems, and Bifurcations of Vector Fields~Springer-
Verlag, Berlin, 1983!.

@12# H. Jang and M.J. Grimson, Phys. Rev. E63, 066119~2001!; H.
Jang, M.J. Grimson, and C.K. Hall, e-print cond-mat/02050
3-18


